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23 Sylow Theorems  
23.1 Conjugacy Classes  
Definition Conjugacy Class of 

Let  and  be elements of a group . We say that  and  are conjugates and call  a 
conjugate of  if  for some  in . The conjugacy class is the set 

.

Theorem 23.1 Number of Conjugates of 

Let  be a finite group and let  be an element of , then .

Proof  is well-defined, one-to-one and onto.

Similarly, .

Corollary 1  Divides .

In a finite group,  Divides .

23.2 The Class Equation  
Corollary 2 Class Equation

For any finite group ,

where the sum runs over one element  from each conjugacy class of .

Theorem 23.2 -Groups Have Nontrivial Centers
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Let  be a nontrivial finite group whose order is a power of a prime , then  has more 
than one element.

Proof  if and only if . By culling out these elements, 
, since  divides both  and , it also divides 

.

Corollary Groups of Order  Are Abelian

If , where  is prime, then  is Abelian.

Proof . If , then , so that  is cyclic, and 
hence  is Abelian. (This case doesn't exist.)

23.3 The Sylow Theorems  
Theorem 23.3 Existence of Subgroups of Prime-Power Order (Sylow First Theorem)

Let  be a finite group and let  be a prime. If  divides , then  has at least one 
subgroup of order .

The converse of Lagrange's Theorem is true for all finite Abelian groups and all finite groups 
of prime-power order.

Definition Sylow -Subgroup

Let  be a finite group and let  be a prime. If  divides  and  does not divide , 
then any subgroup of  of order  is called a Sylow -subgroup of .

Corollary Cauchy's Theorem

Let  be a finite group and let  be a prime that divides the order of , then  has an 
element of order .

Definition Conjugate Subgroups

Let  and  be subgroups of a group , we say that  and  are conjugate in  if there 
is an element  in  such that .

Recall that

, and  divides .
.

Conjugation is an automorphism.

Theorem 23.4 Sylow's Second Theorem

If  is a subgroup of a finite group  and  is a power of a prime , then  is contained 
in some Sylow -subgroup of .

Theorem 23.5 Sylow's Third Theorem

Let  be a prime and let  be a group of order , where  does not divide . Then the 
number  of Sylow -subgroups of  is equal to  modulo  and divides . Furthermore, 
any two Sylow -subgroups of  are conjugate.

Let  be any Sylow -subgroup of  and let  be the set of all 
conjugates of  in , then  if and only if .
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, and .

Note that if a Sylow -subgroup is normal, then , it's also 
unique.

Corollary A Unique Sylow -Subgroup Is Normal

A Sylow -subgroup of a finite group  is a normal subgroup of  is and only if it is the only 
Sylow -subgroup of .

Lattices of subgroups for  and .

23.4 Applications of Sylow Theorems  
Theorem 23.6 Cyclic Groups of Order 

If  is a group of order , where  and  are primes, , and , then  is 
isomorphic to .

Proof The number of Sylow -subgroups of  is of the form  and divides , so 
, so , Simiarly, there is only one Sylow -subgroup  of , and only one 

Sylow -subgroup  of , all of which are normal, so  and , thus 
.

The number of groups of any order less than 2048 is given at http://oeis.org/A000001/b000001.txt

23.5 Exercises  
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Sylow's Theorem ⭐ 

Let  be a finite group of order , where .

1. There exists at least one Sylow -subgroup of .

2. If  and  are Sylow -subgroups, then .

3. ,

,

.

Methods ⭐ 

When consider a group of order :

Use Sylow Third Theorem.

The number of elements of some orders can't exceed the order of the group. (May use  
to form a group.)

Normal ( )

If there is only one Sylow -subgroup, then it's normal.
If a subgroup has index , then it's normal.
Every subgroup of a cyclic normal subgroup is normal.
If  and  are normal, then  and  is normal.

If  is normal, then  is a subgroup; if  is also normal, then .

.

Consider .

If  divides , then  has an element of order .

Groups of order  are Abelian.

 divides  and .

If  is cyclic, then  is Abelian.

Examples

A group of order  must have a proper nontrivial normal subgroup.

A group of order  is Abelian if and only if  and .

If , , then , so .

A group of order  is .

Exercise 40 🌙: Suppose that  is a group of order  and  has a normal subgroup  of 
order , then

 has normal subgroups of orders , , and .
 has subgroups of orders  and .
 has a cyclic subgroup of order .

Answer is in the pdf.

Exercises

1.  is the only group that has exactly two conjugacy classes.

2.  is not the union of all conjugates of a proper subgroup .

3. .



4. Construct a non-Abelian group of the form  and the multiplication is defined using 
the relation , then  must satisfy that  divides  and  divides . ⭐ 

5. Let  be a Sylow -subgroup

1. The elements of  whose orders are powers of  are those of . ⭐ 

2.  is the only Sylow -subgroup of  contained in . 
3. .

6. For a -group  of order 

1.  has normal subgroups of order  for all  between  and  (inclusive). ⭐ 

2. If  has exactly one subgroup for each divisor of , then  is cyclic.
3. If  is a proper subgroup of , then .
4. If  is the smallest prime that divides  and  is cyclic, then .

7.  since  and vice versa. ⭐ 

8. Let  be a Sylow -subgroup of a finite group  and  be a Sylow -subgroup of . If  
divides , then  divides .

9. A normal -subgroup is contained in every Sylow -subgroup. ⭐ 

Question: 34, 52.

Confusino: 54, 63.

23.6 Bibliography of Ludwig Sylow  
 

24 Finite Simple Groups  
24.1 Historical Background  
Definition Simple Group

A group is simple if its only normal subgroups are the identity subgroup and the group 
itself.

The series of simple groups  are called the composition 
factors of .

Simple groups families examples

The Abelian simple groups is .
 is simple for all .

 except when  and .
Feit-Thompson Theorem: A non-Abelian simple group has even order.
The largest sporadic simple group: Monster. 

24.2 Nonsimplicity Tests  
Theorem 24.1 Sylow Test for Nonsimplicity

Let  be a positive integer that is not prime, and let  be a prime divisor of . If  is the only 
divisor of  that is equal to  modulo , then there does not exist a simple group of order .

Proof
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If  is a prime-power, then a group of order  has a nontrivial center and therefore is not simple.

Else, the number of Sylow -subgroups of a group of order  is equal to  modulo  and divides 
. Therefore the number is  and hence the Sylow -subgroup is normal.

Theorem 24.2  Test

An integer of the form , where  is an odd number greater than , is not the order of a 
simple group.

Proof

, where  is an isomorphism from  to its permutation group. 
Since , there is an element  in  of order . Then, when  is written in disjoint cycle 
form, each cycle must have length  or . But -cycle (x) would mean  and . 
Thus  consists of exactly  transpositions. Therefore  is an odd permutation. This means that 
the set of even permutation has index  and hence normal.

Theorem 24.3 Generalized Cayley Theorem

Let  be a group and let  be a subgroup of . Let  be the group of all permutations of 
the left cosets of  in . Then there is a homomorphism from  into  whose kernel lies in 

 and contains every normal subgroup of  that is contained in .

Proof

Define , then  is a homomorphism from  into .

If , then , thus .

If  is normal and , then  is a identity 
permutation, thus .

The kernel itself is a normal subgroup.
If , where  is the smallest prime divisor of , then  is normal.

Corollary 1 Index Theorem

If  is a finite group and  is a proper subgroup of  such that  does not divide 
, then  contains a nontrivial normal subgroup of . In particular,  is not simple.

Proof

 is a normal subgroup of  contained in  and  is isomorphic to a subgroup of 
. Thus,  divides , and the order of  must be 
greater than .

Corollary 2 Embedding Theorem

If a finite non-Abelian simple group  has a subgroup of index , then  is isomorphic to a 
subgroup of .

Non-Abelian simple groups of order less than :

Icosahedral (Or dodecahedron) group: .



.

Every group is isomorphic to a subgroup of  for some  (Cayley's Theorem), and  is a 
subgroup of , so every group is isomorphic to a subgroup of a finite simple group.

24.3 The Simplicity of  

24.4 The Fields Medal  

24.5 The Cole Prize  

24.6 Exercises  
Methods

Theorems

Sylow's Theorems. ( )
 Test.

Index Theorem. (Consider .)
Embedding Theorem. (Find impossible orders.)

 divides .
If , .

Every  group of order  has an element of order .

If , then .

Consider the subgroup  of another prime  of , then  and 
.

Every proper subgroup  of a -group  is a proper subgroup of , i.e. .

Exercise

1. There is no simple group of order , where ,  and  are primes (need not to be distinct).
2. If  is a proper normal subgroup of largest order of , then  is simple.
3. If  and  are subgroups of a finite simple group  such that  and  are 

prime, then .
4. If there is a non-trivial homomorphism from a finite group  to  where , then  

is not simple.
5. A group of order , where  or  is a prime, has a normal subgroup of order  

or .

Quesetion: 8, 26

24.7 Bibliography of Michael Aschbacher  

24.8 Bibliography of Daniel Gorenstein  

24.9 Bibliography of John Thompson  
 

25 Generators and Relations  
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25.1 Motivation  

25.2 Definitions and Notation  
For any set , define , 

.
The elements in  is called words from , and the word is called the empty word  
when .
Define a binary operation such that .
Notice that  is not ,  is not .

Definition Equivalence Classes of Words

For any pair of elements  and  of , we say that  is related to  if  can be obtained 
from  by a finite sequence of insertions or deletions of words of the form  of , 
where .

25.3 Free Group  
Theorem 25.1 Equivalence Classes Form a Group

Let  be a set of distinct symbols. For any word  in , let  denote the set of all words 
in  equivalent to . Then the set of all equivalence classes of elements of  is a 
group under the operation .

Theorem 25.2 Universal Mapping Property

Every group is a homomorphic image of a free group.

Corollary Universal Factor Group Property

Every group is isomorphic to a factor group of a free group.

25.4 Generators and Relations  
Definition Generators and Relations

Let  be a group generated by some subset  and let  be the free 
group on . Let  be a subset of  and let  be the smallest normal 
subgroup of  containing . We say that  is given by the generators  and 
the relations  if there is an isomorphism from  onto  that 
carries  to .

, and the RHS is called the presentation.
The only nontrivial Abelian group that is free: .

Theorem 25.3 Dyck's Theorem (1882)

Let , and 
, then  is a 

homomorphic image of .

Corollary Largest Group Satisfying Defining Relations

If  is a group satisfying the defining relations of a finite group  and , then 
.
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25.5 Classification of Groups of Order Up to  
Theorem 25.4 Classification of Groups of Order 8 (Cayley, 1859)

Up to isomorphism, there are only five groups of order 8: 
 (quaternions).

Quaternions: .
Dicyclic group of order : , 

, .

25.6 Characterization of Dihedral Groups  
Theorem 25.5 Characterization of Dihedral Groups

Any group generated by a pair of elements of order 2 is dihedral.

.
In , .

25.7 Exercises  

1. .

 

25.8 Bibliography of Marshall Hall, Jr.  
 

26 Symmetry Groups  
26.1 Isometries  
Definition Isometry

An isometry of -dimensional space  is a function from  onto  that preserves 
distance.

Definition Symmetry Group of a Figure in 

Let  be a set of points in , then the symmetry group of  in  is the set of all 
isometries of  that carry  onto itself, whose operation is function composition.

Every isometry of  is one of four types:

Rotation, reflection (mirror), translation, glide-reflection.

26.2 Classification of Finite Plane Symmetry Groups  
Theorem 26.1 Finite Symmtry Groups in the Plane

The only finite plane symmetry gruops are  and .

26.3 Classification of Finite Groups of Roation in  
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Theorem 26.2 Finite Gruops of Rotations in 

Up to isomorphism, the finite groups of rotations in  are .

26.4 Exercises  
Confusion: 9

 

27 Symmetry and Counting  
27.1 Motivation  

27.2 Burnside's Theorem  
Definition Elements Fixed by 

For any group  of permutations on a set  and any  in , we let 
.

Theorem 27.1 Burnside's Theorem

If  is a finite group of pertations on a set , then the number of orbits of elements of  
under  is

Proof Let  denote the number of pairs , and count these pairs 
in two ways:

27.3 Applications  

27.4 Group Action  
e.g. .

27.5 Exercises  

27.6 Bibliogrphy of William Burnside  
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28 Cayley Digraphs of Groups  
28.1 Motivation  

28.2 The Cayley Digraph of a Group  
Definition Cayley Digraph of a Group

Let  be a finite group and let  be a set of generators for . We define a digraph (directed 
graph) , called the Cayley digraph of  with generating set , as follows:

1. Each element of  is a vertex of .
2. , there is an arc from  to  if and only if .

28.3 Hamiltonian Circuits and Paths  
Theorem 28.1 A Necessary Condition

 does not have a Hamiltonian circuit when 
.

Theorem 28.2 A Sufficient Condition

 has a Hamiltonian circuit when .

This Hamiltonian circuit can be denoted by .

Theorem 28.3 Abelian Groups Have Hamiltonian Paths

Let  be a finite Abelian group, and let  be any generating set for , then  has 
a Hamiltonian path.

.
It can be generalized to include all Hamiltonian groups, all of whose subgroups are normal. 
(One non-Abelian example is .)

 has a Hamiltonian circuit.

28.4 Some Applications  

28.5 Exercises  
Confusion: 36.

28.6 Bibliography of William Rowan Hamilton  

28.7 Bibliography of Paul Erdos  
 

29 Introduciton to Algebraic Coding
Theory

 

29.1 Motivation  
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Hamming (7, 4) Code

Multiply each of the 4-tuples on the right by the matrix

29.2 Linear Codes  
Definition Linear Code

An  linear code over a finite field  is a -dimensional subspace  of the vector space 
 over . The members of  are called the code words. When 

, the code is called binary. When , the code is called ternary.

In a binary linear code

For all digits, either all the code words are 0, or exactly half of them are 0.
Either every member has even weight, or exactly half of them has even weight.

Definition Hamming Distance, Hamming Weight

The Hamming distance between two vectors in  is the number of components in which 
they differ. The Hamming weight of a vector is the number of nonzero components of the 
vector. The Hamming weight of a linear code is the minimum weight of any nonzero vector 
in the code.

Hamming distance: .
Hamming weight: .

Theorem 29.1 Properties of Hamming Distance and Hamming Weight

1. .
2. .

.
.
.

Theorem 29.2 Correcting Capability of a Linear Code

If the Hamming weight of a linear code is at least , then the code can 
correct any  or fewer errors. Alternatively, the same code can detect any  or fewer errors.

Proof 1. For a transmitted code word  and a received code word , consider a code word other 
than , then

so the code word closest to  is .

2. , but the minimum distance between distinct code words is at least .

The converse of Theorem 29.2 is also true.

We can't do both simultaneously.
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If we write the Hamming weight of a linear code in the form , we can correct any  
or fewer errors and detect any  or fewer erros. ⭐ 

For example, for a code with Hamming weight 5, we have options as follows

1. Detect any four errors ( ).
2. Correct any one error and detect any two or three errors ( ).
3. Correct any two errors ( ).

A matrix of the following form is called the standard generator matrix (or standard 
encoding matrix), which produces a systematic code.

29.3 Parity-Check Matrix Decoding  
If there is only one error:

Suppose that  is a systematic linear code over the field  given by the standard generator 

matrix , then  is the parity-check matrix for .

1. For any received word , compute .

2. If  is the zero vector, assume that no error was made.

3. If there is exactly one instance of a nonzero element  and a row  of  such that 

, assume that the sent word was , where  occurs in the th 
component.

(When the code is binary, if  is the th row of  for exactly one ...)

It cannot detect any multiple errors, and we have restrictions on the parity-check matrix.

Lemma 29.1 Orthogonality Relation

Let  be a systematic  linear code over  with a standard generator matrix  and 
parity-check matrix . Then, for any vector  in , we have .

Proof ,

Theorem 29.3 Parity-Check Matrix

Parity-check matrix decoding will correct any single error if and only if the rows of the parity-
check matrix are nonzero and no one row is a scalar multiple of any other row.

Proof .

29.4 Coset Decoding  
Construct a table called a standard array whose words in the first column are called the 
coset leaders.
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A table of an  linear code over a field with  elemnts will have  columns and 
 rows.

Theorem 29.4 Coset Decoding Is Nearest-Neighbor Decoding

In coset decoding, a received word  is decoded as a code word  such that  is a 
minimum.

Proof Suppose that  is the coset leader for the coset , then  
for some . Now, if  is any code word, then 

, therefore

Definition Syndrome

If an  linear code over  has parity-check matrix , then, for any vector  in , the 
vector  is called the syndrome of .

Theorem 29.5 Same Coset Same Syndrome

Let  be an  linear code over  with a parity-check matrix . Then, two vectors of  
are in the same coset of  if and only if they have the same syndrome.

Proof .

Steps

1. Calculate the syndrome .
2. Find the coset leader  such that .
3. Assume that the vector sent was .

29.5 Historical Note  

29.6 Exercises  
Methods

1. Nearest-neighbor method.
2. Parity-check matrix method.
3. Coset decoding using a standard array.
4. Coset decoding using the syndrome method.

29.7 Bibliography of Richard W.Hamming  

29.8 Bibliography of Jessie mac Williams  

29.9 Bibliography of Vera Pless  
 

30 An introduction to Galois Theory  
30.1 Fundamental Theorem of Galois Theory  
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Definitions Automorphism, Galois Group, Fixed Field of 

Let  be an extension field of the field . An automorphism of  is a ring isomorphism 
from  onto . The Galois group of  over , , is the set of all automorphisms of 

 that take every element of  to itself. If  is a subgroup of , then the set

is called the fixed field of .

Let  be the lattice of subfields of  containing , and let  be the lattice of subgroups of 
, then

.
.

.
.

Theorem 30.1 Fundamental Theorem of Galois Theory

Let  be a field of characteristic 0 or a finite field. If  is the splitting field over  for some 
polynomial in , then  is a one-to-one correspondence. 
Furthermore, for any subfield  of  containing ,

1. .

(The index of  in  equals the degree of  over .)

2. If  is the splitting field of some polynomimal in , then  is a normal 
subgroup of , and .

3. . (The fixed field of  is .)

4. If  is a subgroup of , then .

(The automorphism group of  fixing  is .)

.

Proof Say , , where  is the zero of an irreducible polynomial 
.

, so there are at most  possibilities for .

 is an automorphism, and  is cyclic, so  has order .

Thus, .

30.2 Solvability of Polynomials by Radicals  
Definition Solvable by Radicals

Let  be a field, and let . We say that  is solvable by radicals over  if 
 splits in some extension  of  and there exist positive integers 

 such that  and  for .

Definition Solvable Group

We say that a group  is solvable if  has a series subgroups
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where for each ,  is normal in  and  is Abelian.

If  is a finite solvable group, then there exist subgroups of 

such that  has prime order.

A subgroup of a solvable group is solvable.

Examples

Solvable groups: Abelian groups, dihedral groups, groups of orde .
Every group of odd order is solvable. (Feit-Thompson Theorem)
Any non-Abelian simple group is not solvable.

 is solvable if and only if .

Theorem 30.2 Condition for  to be Solvable

Let  be a field of characteristic 0 and let . If  is the splitting field of  over , 
then the Galois group  is solvable.

Theorem 30.3 Factor Group of a Solvable Group Is Solvable

A factor group of a solvable group is solvable.

Theorem 30.4  and  Solvable Implies  is Solvable

Let  be a normal subgroup of a group . If both  and  are solvable, then  is 
solvable.

Theorem 30.5 Solvable by Radicals Implies Solvable Group (Galois)

Let  be a field of characteristic 0 and let . Suppose that  splits in 
, where  and  for . Let  

be the splitting field for  over  in , then the Galois group  
is solvable.

The converse is true also: if  is the splitting field of a polynomial  over a field  of 
characteristic 0 and  is solvable, then  is solvable by radicals over .
Every finite group is a Galois group over some field.
Every solvable group is a Galois group over .

30.3 Insolvability of a Quintic  

30.4 Exercises  
1. Let  and let the zeros of  be . If , then 

 is isomorphic to a group of the 's, i.e., a subgroup of .

 

31 Cyclotomic Extensions  
31.1 Motivation  
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31.2 Cyclotomic Polynomials  
th cyclotomic extension of .

The irreducible factors of  over  are called the cyclotomic polynomials.

 are called the primitive th roots of unity.

Definition Cyclotomic Polynomial

For any positive integer , let  denote the primitive th roots of unity. The 
th cyclotomic polynomial over  is the polynomial

.
.

Theorem 31.1 

For every positive integer , , where the product runs over all positive 

divisors  of .

It can be used to find the irreducible factorization of  over .

Theorem 31.2  Has Integer Coefficients

For every positive integer ,  has integer coefficients.

Theorem 31.3.  Is Irreducible Over  (Gauss)

The cyclotomic polynomial  are irreducible over .

Theorem 31.4 

Let  be a primitive th root of unity, then .

31.3 The Constructible Reugular n-gons  
Lemma 

Let , then .

Theorem 31.5 Construciblity Criteria for a Regular 

It is possible to construct the regular -gon with a straightedge and compass if and only if  
has the form  and the 's are distinct primes of the form  (or 

).

31.4 Exercises  

1. .

2. If  is a prime, then  for some .

3. If a field contains th roots of unity for  odd, then it also contains th roots of unity. 
Furthermore, . ⭐ 

4. . ⭐ 
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5. . ⭐ 

 

31.5 Bibliography of Carl Friedrich Gauss  

31.6 Bibliography of Manjul Bhargava  
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